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Abstract 

This research Huffman encoding for modified RSA-AES encrypted token compression in secure 

banking transactions aims to improve the security strength of customer banking credentials in 

transit and at rest by modifying the RSA token generation stage of encryption. These tokens are 

not original banking credentials but 32-bit decryption keys of AES. This modification will be made 

possible by using SHA-256 token generation for its historic strength and resistant to brute-force 

attack. This approach may hinder a serious computational overheat and time-space complexity. 

However, we propose the use of Huffman encoding with its quicker data compression to overcome 

the data size intricacy. 

Keyword: SHA-256, avalanche effect, Huffmann Encoding, Entropy, overheat 

 

INTRODUCTION 

Securing banking transactions have become increasingly challenging in today's digitally connected 

world where financial data is constantly being transmitted over various networks. The potential 

risks associated with data breaches and unauthorized access to sensitive information have made 

encryption and data compression essential components of modern banking systems (Haryaman et 

al 2024). Securing sensitive customer banking tokens like credit card numbers and account 

credentials is also essential (Agur et al 2020). As more transactions and communications occur 
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digitally, banks and other financial institutions must ensure customer’s data is protected during 

storage and transmission (Javaid et al 2022). Currently, many payment networks and banking 

systems use AES a symmetric encryption standard to protect tokens and data in transit and at rest. 

AES applies cipher block chaining (CBC) and other techniques to encrypt plain text data into 

uncomprehensible ciphertexts (Altigani et al 2021). 

AES is widely used globally to protect classified information (Smid, 2021). AES was chosen to 

replace the older Data Encryption Standard (DES) which was vulnerable to brute force attacks by 

National Institute of Standards and Technology (NIST) in 2001 after a 5-year standardization 

process, it is considered very difficult to crack through brute force attacks. AES transforms plain 

text data into fixed block sizes of ciphertexts and encryption keys. AES provides very high security 

against known attacks with its multiple round structure and large secret key sizes. It encrypts and 

decrypts data in fixed block sizes of 128 bits using cryptographic keys of 128-bits, 192-bits or 256-

bits (Kishor Kumar et al 2024). It applies substitution, permutation and transformation techniques 

in multiple rounds to convert plaintext to ciphertext and back. Each round uses different keys 

derived from the original key using key scheduling algorithms. The number of rounds depends on 

the key size - 10 rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit 

keys. The more rounds used, the more secure the AES encryption is against attacks. Analysing 

AES encrypted data without knowing the original key is extremely difficult given the complexity 

of reverse engineering the multiple substitution, permutation and transformation rounds. Brute 

force attacks trying all possible key combinations also become infeasible as key sizes grow larger 

(Andersson, 2023). No effective cryptographic attacks against AES itself are publicly known so 

far (Grassi et al 2021). The only risk is if inadequately secured keys get compromised. By 

encrypting all bank transaction data with strong 256-bit or higher AES keys, the data is secured 

even if intercepted during transmission.  

To enhance the encryption process, AES is often used alongside other cryptographic algorithms 

and compression algorithms, ensuring the secure transformation and exchange of classified 

information. In the decryption process, the inverse mix columns and inverse shift rows steps are 

executed first. This is followed by the byte substitution step, which uses the inverse Sub Bytes 

process to perform the inverse transformation, culminating in inverse multiplication. The final 

result is the restoration of the original plaintext. 

This research aimed to integrate AES and modified RSA (RSA-SHA-256) encryption algorithms 

for data security and employ lossless Huffman encoding for data compression during transmission 

in the context of secure banking transactions which will protect sensitive customer information 

while optimizing speed and storage capacity. 

Statement of the Problem 

The rapid advancements in digital banking necessitate the deployment of secure and efficient 

encryption techniques to safeguard sensitive transactional data. One of the prevailing challenges 

in this domain is the optimization of data compression without compromising security. RSA-AES 

http://www.iiardjournals.org/


 

 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version 

 

 

 

 

 IIARD – International Institute of Academic Research and Development 

 

Page 100 

encryption is widely recognized for its robustness but it is typically results in increased file sizes, 

which can hinder transmission efficiency and storage capabilities.  

Recent publications highlight the potential of integrating Huffman encoding with RSA-AES 

encryption to optimize data compression. However, they collectively underscore the need for more 

comprehensive evaluations and comparisons particularly in terms of computational efficiency and 

applicability across diverse transaction volumes. These limitations could be addressed by 

developing and rigorously testing hybrid encryption-compression models that ensure both security 

and efficiency in real-world environments. A critical examination using Avalanche Effect, 

Compression Time and Decryption and Decompression Time can the true potential of the proposed 

system model be realized in secure banking transactions. 

Aim and Objectives 

The aim of this research is to design, develop, and evaluate a hybrid model for data encryption, 

using AES-RSA, and data compression, using Huffman encoding, to enhance banking data 

security, and the objectives are: 

i. To design a modified RSA encryption algorithm 

ii. To develop a hybrid model of data encryption and compression using the modified AES-

RSA and Huffman encoding 

iii. To evaluate the performance of the model in comparison to existing models. 

LITERATURE REVIEW 

Tabassum & Mahmood, (2020), Azharul (2019) propose a dictionary-based compression scheme 

using 5-bit encoding for each character, effectively reducing storage requirements for natural 

language text. However, the study lacks detailed evaluation data, quantitative results, and 

comparisons to other techniques.  

Habib et al (2020) also discuss a dictionary-based text compression technique using reduced bit 

encoding. Similar to Tabassum and Azharul's study, this paper lacks detailed evaluation and 

comparisons, leaving the generalizability to diverse datasets unassessed. Sivanandam, L., 

Sivanandam et al (2020) introduce the Power Transition X Filling and Selective Huffman Coding 

encoding techniques, which outperform existing methods in compression efficiency. These 

methods reduce application testing time and memory consumption, though product development 

constraints affect performance and quality. Kaffah et al (2020) investigate the use of AES and 

Huffman compression for encrypting e-mail messages. The AES-Huffman encryption system 

achieves high accuracy and performance, but it faces limitations such as vulnerability to hacking 

and data leakage, with a constraint of 32,200 characters due to compression. 

Herzog et al (2020) explore the impact of evasive techniques used by Windows malware on 

antivirus software and possible countermeasures. The study finds that countermeasures can alter 

malware behavior, but it notes limitations in the analysis of advanced evasion capabilities. Haldar-

http://www.iiardjournals.org/


 

 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version 

 

 

 

 

 IIARD – International Institute of Academic Research and Development 

 

Page 101 

Iversen, (2020) examines the use of DEFLATE, dictionary coding, and Huffman coding for ASCII 

text compression. The study concludes that no method outperforms general-purpose compression 

programs, with the ACM algorithm achieving better compression ratios for ASCII-heavy texts. 

Gajjala et al (2020) examine Huffman-based encoding techniques for gradient compression in deep 

learning, introducing RLH, SH, and SHS encoders. RLH stands out with up to 5.1 times data 

volume reduction, though computational complexity and efficiency issues hinder widespread 

quantization technique adoption. Ranjin (2020) presents canonical Huffman coding for image 

compression using wavelet decomposition and thresholding techniques. The approach efficiently 

reduces image file sizes by discarding insignificant coefficients and minimizing the codebook size 

through Huffman coding. Taneja & Shukla, (2021)conduct a comparative study between RSA and 

an optimized version for enhanced security, emphasizing improved information security and 

efficiency with reduced resource requirements during encoding and decoding. However, 

challenges in real-world implementation and scalability remain significant. 

Agur et al (2020) analyze the growth of digital financial services (DFS) in emerging economies, 

noting significant increases in digital lending and remittances. However, scaling DFS during crises 

without proper safeguards exacerbates operational and cyber risks and deepens existing societal 

divides. Moreover, Sondre (2020) assesses various compression algorithms, including Huffman 

coding and DEFLATE, in their ability to improve the security and efficiency of data transmission 

in financial institutions. They conclude that while no single compression method outperforms 

general-purpose compression programs across all data types, 

Wahab et al (2021) propose a hybrid approach combining RSA cryptography with Huffman coding 

and discrete wavelet transform (DWT) for data hiding. The method enhances security and achieves 

high-quality stego-images, although it lacks comprehensive comparison with other hybrid 

compression techniques. 

Sandhu, (2021) reviews traditional lossless data compression methods, emphasizing the efficiency 

of Huffman and arithmetic coding validated through simulation. Adaptive methods seek to mitigate 

the limitations of classical techniques but face challenges in achieving optimal compression 

efficiency. Bouguessa et al. (2021) introduce an adaptive Huffman coding technique combined 

with chaotic maps for secure data compression. Despite passing NIST randomness tests, the 

method exhibits slightly lower compression ratios compared to standard techniques, posing 

increased complexity. Rahman & Hamada, (2023) innovate by combining Burrows-Wheeler 

transform, GPT-2 language model, and Huffman coding for text compression. However, 

challenges such as error sensitivity and comparatively lower compression rates affect its broader 

applicability. Grassi et al (2021) explore weak-key distinguishers for AES, extending AES 

distinguishers to more rounds but acknowledging limitations due to AES key-schedule properties 

and the complexity of chosen-key distinguishers. 

Abhilash et al (2023) review the use of RSA and AES encryption methodologies for secure 

banking, highlighting their effectiveness in preventing security attacks but also noting specific 
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constraints and challenges in real-world implementation.  Paavni G. & Ajay K. (2021) discuss AES 

image encryption methods, ensuring secure transmission of sensitive data while addressing 

complexities in managing large image files and real-time encryption requirements. 

Recently, several approaches have been proposed for enhancing data security and efficiency in 

various domains. Prasann et al. (2024) conducted an analysis of modern encryption methods, 

including AES encryption, Huffman Coding, and LSB Steganography. They reported similar 

findings with a focus on enhancing entropy and the Avalanche Effect, while acknowledging 

limitations in evaluating specific file types and conducting comprehensive comparisons or 

computational overhead evaluations. Abdo et al. (2024) proposed a hybrid approach to secure and 

compress data streams within cloud computing environments. Their method aimed to 

simultaneously enhance data security, reduce storage space requirements, and optimize data 

transmission speeds. They discussed challenges related to scalability, trade-offs between security 

and compression efficiency, and computational overhead in resource-constrained cloud 

environments. 

METHODOLOGY 

This section examines the conventional RSA (Rivest-Shamir-Adleman) who’s amongst its 

weaknesses are insufficient randomness, V-timing attacks, chosen ciphertext attack (CCA), 

vulnerability to quantum computing, and large key size requirement. These limitations arose the 

need for robust, light-weight and reliable hybrid system for data key protection. 

The Huffman Algorithm 

 The basic technique for Huffman encoding involves the following steps: 

Step 1: Frequency Calculation 

 Let Let S =  {s1, s2, sn} ... 

(1Error! 

No 

sequence 

specified.) 

be the set of symbols in the input data  

Let f(si) represent the frequency of symbol si 

Compute the frequency for each symbol si in the dataset. 

Step 2: Probability Distribution 
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The probability of each symbol si is given by  

 
𝑝(si)  =

 𝑓(𝑆𝑖)

∑ 𝑓(𝑠𝑗)
𝑛
𝑗=1

 
... 

(2Error! 

No 

sequence 

specified.) 

Where ∑ 𝑓(𝑠𝑗)
𝑛
𝑗=1 = 1 

Step 3:  Building the Huffman Tree 

Initialize a min-heap H containing all symbols si with their frequencies f(si). 

While there is more than one node in the heap: 

Remove the two nodes x and y with the smallest frequencies from the heap. 

Create a new node. 

 𝑧 with 𝑓(𝑧)  =  𝑓(𝑥)  +  𝑓(𝑦) ... 

(3Error! 

No 

sequence 

specified.) 

Insert z back into the heap. 

The final node in the heap is the root of the Huffman tree. 

Step4: Assigning Codes 

Traverse the Huffman tree to assign binary codes: 

Moving left adds a '0' to the code. 

Moving right adds a '1' to the code. 

The code length l(si) for each symbol si  is determined by its depth in the tree. 

Step 5: Encoding 

http://www.iiardjournals.org/
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The Huffman code for each symbol si  minimizes the total cost (expected length) of the encoded 

data. 

The expected length L of the encoded data is given  

 by  𝐿 = ∑ 𝑃(𝑠𝑖)  × 𝑙(𝑠𝑖) 
𝑛
𝑖=1  ... (4) 

Step 6: Optimality 

Huffman encoding is optimal for a set of symbols where the goal is to minimize the average code 

length, satisfying: H(S) ≤ L < H(S) + 1 

Where H(S) is the entropy of the source:  

 
𝐻(𝑠) = ∑𝑃(𝑠𝑖) log 2  𝑝(𝑠𝑖) 

𝑛

𝑖=1

 
... (5) 

The Advanced Encryption Standard (AES) 

Step 1: Block and Key Size 

AES operates on a block size of 128 bits (16 bytes). The key size can be 128, 192, or 256 bits. 

Let P represent the plaintext block and C the ciphertext block. 

Let K represent the encryption key, where K is 128, 192, or 256 bits. 

Step2: State Representation 

The plaintext P is arranged into a 4x4 state matrix:  

State= 

𝑝0,0 𝑝0,1 𝑝0,2 𝑝0,3

𝑝1,0 𝑝1,1 𝑝1,2 𝑝1,3

𝑝2,0 𝑝2,1 𝑝2,2 𝑝2,3

𝑝3,0 𝑝3,1 𝑝3,2 𝑝3,3

 

Step3: Key Expansion 

The key K undergoes a process called key expansion to generate a series of round keys. 

Number of rounds Nr is 10, 12, or 14 for 128, 192, or 256-bit keys respectively. 

http://www.iiardjournals.org/
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The round keys Wi  is derived using the Rijndael key schedule algorithm. 

Step4: Initial Round 

AddRoundKey: 

Each byte of the state is XORed with the corresponding byte of the initial round key W0: 

  State = State ⊕  W0  ... (6) 

Step5: Main Rounds (Repeated Nr − 1Times) 

Each round consists of the following transformations: 

SubBytes: 

Each byte b in the state matrix is replaced with an entry from an S-Box (substitution box): b′=S(b) 

ShiftRows: 

Rows of the state are shifted cyclically to the left: Row(r) shifted left by r positions. 

MixColumns: 

Each column of the state matrix is transformed using a fixed polynomial over GF(28) 

  

[
 
 
 
𝑐0

′

𝑐1
′

𝑐2
′

𝑐3
′ ]
 
 
 

= [

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

] = [

𝑐0

𝑐1

𝑐2

𝑐3

] 

AddRoundKey: 

The state matrix is XORed with the round key for the current round: 

State= State ⊕ Wi 

Step6: Final Round 

The final round omits the MixColumns step and only includes: 

1. SubBytes 

2. ShiftRows 

http://www.iiardjournals.org/


 

 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version 

 

 

 

 

 IIARD – International Institute of Academic Research and Development 

 

Page 106 

3. AddRoundKey 

Step7: Ciphertext Output 

After the final round, the state matrix is transformed back into a linear array, resulting in the 

ciphertext C. 

Step8: Decryption 

AES decryption involves reversing each step using the inverse operations 

Inverse SubBytes, Inverse ShiftRows, Inverse MixColumns, and AddRoundKey with round keys 

applied in reverse order. 

AES relies on complex mathematical structures, such as finite field arithmetic in GF(28) and the 

use of S-Boxes for non-linearity, making it resistant to various forms of cryptanalysis.

 

Figure 1: AES Encryption process Structure (Sruthy, 2024) 

The Conventional Rivest Shamir Adleman (RSA) 
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Here’s a detailed explanation of the encryption and decryption process. 

Step 1: Key Generation 

Prime Selection: 

Choose two large prime numbers p and q. 

Modulus Calculation: 

Compute n, the modulus for both the public and private keys 

 𝑛 =  𝑝 ×  𝑞 ... (1) 

Totient Calculation: 

Calculate the totient ϕ(n) (Euler's totient function) for n 

 ϕ(n) = (p − 1) × (q − 1) ... (2) 

Public Key e: 

Choose an integer e such that 

1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1 (i.e., e is coprime to ϕ(n)). 

Private Key d: 

Calculate d, the modular multiplicative inverse of e modulo ϕ(n) 

 D ≡ e−1 mod ϕ(n) ... (3) 

This means d satisfies: (d×e) mod ϕ(n)=1 

Keys: 

Public Key: (e, n) 

Private Key: (d, n) 

Step 2: Encryption Process 

Convert Message to Integer (m) 

http://www.iiardjournals.org/
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Transform the plaintext message into an integer m such that 0 ≤ m < n. This can be done using 

various encoding schemes like UTF-8. 

Use the public key (e, n) to compute the ciphertext   

 C = Me (mod n) ... (5) 

Step 3: Decryption Process 

Use the private key (d, n) to retrieve the original message m 

 M = Cd (mod n) ... (6) 

Convert Integer Back to Message 

Decode the integer m back to the original plaintext message using the same encoding scheme 

applied during encryption. 

http://www.iiardjournals.org/


 

 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version 

 

 

 

 

 IIARD – International Institute of Academic Research and Development 

 

Page 109 

 

http://www.iiardjournals.org/


 

 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version 

 

 

 

 

 IIARD – International Institute of Academic Research and Development 

 

Page 110 

Figure 2: RSA Flowchart (Imam et al., 2022). 

RSA is a widely used asymmetric encryption algorithm but despite its robustness in secret key 

management, RSA has several security weaknesses which include: large key size requirement, 

vulnerability to quantum computing, chosen ciphertext attack (CCA), timing attack, and 

insufficient randomness.  These shortcomings raise alarm of serious concern on strengthening the 

algorithm to keep off such threatening threats precisely its vulnerability to quantum computing. 

RSA is susceptible to quantum computing attacks, specifically Shor’s algorithm, which can factor 

large integers efficiently, potentially breaking RSA encryption. 

The proposed system 

The proposed hybrid system for data security that integrate compression and encryption techniques 

to enhance data security will use Advanced Encryption Standard (AES) to encrypt the data. To 

securely distribute the AES key, it is encrypted using the Rivest-Shamir-Adleman (RSA) 

algorithm. This layered approach addresses RSA's vulnerability to large data sizes by limiting its 

use to encrypting only the AES key, not the entire data. The system then uses Huffman encoding 

to compress the cyphertexts for transmission. By compressing the data before encryption, this 

system reduces the amount of data being processed, enhancing efficiency and security. AES 

provides fast and secure data encryption, while RSA securely manages key exchange its 

shortcomings mentioned in section 3.3.3 is anticipated to be overcome buy hashing the message 

instead of signing the entire message directly using a secure hash function (SHA-256). The 

resulting hash value is then signed using the RSA private key. This will absolutely eliminate the 

chance of brute-force attack 

System Design 

Firstly, the conventional RSA is modified in the following steps; 

Modified Rivest Shamir Adleman (RSA) 

The process of hashing the massage before encrypting 

Step 1: Hash the Message 

Compute the hash h of the message M 

 h = Hash(M) ... (1) 

Step 2: Sign the Hash 

Encrypt the hash using the RSA private key d 

http://www.iiardjournals.org/
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  S = hd mod n ... (2) 

Step4: Verification 

To verify, the recipient decrypts the signature using the RSA public key e to recover the hash, then 

compares it with the hash of the received message 

 ℎ′ = 𝑆𝑒𝑚𝑜𝑑 𝑛 ... (3) 

If ℎ′ matches Hash (M), the signature is valid. 

Proposed Hybrid Algorithm 

Here is an algorithm integrates AES, RSA with hashing, and Huffman encoding into a single hybrid 

cryptographic algorithm. 

Step 1: Data Encryption with AES 

 Generate AES Key: Generate a random symmetric key KAES for AES encryption. 

Encrypt Data: Encrypt the plaintext data P using AES with the generated key KAES 

 CAES =  AES_Encrypt (KAES, P) ... (4) 

Step 2: Encrypt AES Key with Hashed RSA 

Hash the AES Key: Hash the AES key KAES using a secure hash function (SHA-256) to get a fixed-

length representation   

 H(KAES)  =  Hash(KAES) ... (5) 

RSA Encryption: Encrypt the hashed AES key H(KAES) using the RSA public key (e, n) 

 CRSA = (H(KAES))e mod n ... (6) 

CRSA is the RSA-encrypted hash of the AES key. 

Step 3: Compress Tokens Using Huffman Encoding 

Concatenate Ciphertext and RSA Token: Combine CAES and CRSA  into a single message for 

transmission. 

http://www.iiardjournals.org/
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 T =  CAES ∥  CRSA ... (7) 

∥ denotes concatenation 

 Huffman Encoding: Compress the concatenated tokens T using Huffman encoding 

 Tcompressed =  Huffman_Encode(𝑇) ... (8) 

Step 4: Decryption Process on the Recipient's Side 

Huffman Decoding:  

Decompress the received data using Huffman decoding to retrieve the concatenated tokens T: T = 

Huffman_Decode(Tcompressed) 

Extract Components:  

Split T into CAES  and CRSA 

RSA Decryption: 

Decrypt CRSA the RSA private key (d, n) to retrieve the hashed AES key: 

  H(KAES)  =  (CRSA)d mod 𝑛 ... (9) 

AES Key Recovery:  

Since the original algorithm encrypts a hash, you must either: 

Derive the AES key from the decrypted hash if a deterministic process was used during key 

generation. 

If a non-deterministic hash was used, store a mapping securely to retrieve the original key 

 AES Decryption:  

Decrypt CAES  using KAES to recover the original plaintext data 

 P = AES_Decrypt(KAES,CAES) ... (10) 

http://www.iiardjournals.org/
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Finally, the algorithm entails data encryption (Use AES to encrypt the data with a randomly 

generated key), key encryption (Encrypt the hash of the AES key using RSA) and compression 

(Compress the resulting ciphertext and RSA-encrypted hash using Huffman encoding) 

System Architecture 

Figure 3.3 shows the proposed system architecture. 

 

Figure 3: Proposed System Architecture 

Working Description of the Model 

The first stage of the model operation is data encryption which starts from generating AES keys 

associated with its random sample data. The next stage is Encrypting the Data using the AES key, 
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we encrypt the actual data you want to protect. This process turns the data into scrambled 

information that can only be read if you have the key. 

Before we encrypt the AES key, we run it through a hash function (sha-256). Hashing is like 

creating a unique fingerprint for the key. It ensures the key is represented in a fixed and secure 

way. Now the we take this hashed version of the AES key and encrypt it using RSA a different 

kind of encryption method that uses a pair of keys, one for encryption (public key) and one for 

decryption (private key). Only the recipient who has the private key can decrypt and access the 

AES key. 

Compressing the Data Using Huffman Encoding is the next stage which we start by combining 

everything. After encrypting the data with AES and the key with RSA we put them together into 

one package and to make the package smaller and easier to send, we use Huffman encoding, a 

compression technique that reduces the size of the data without losing any information. 

The final compressed and encrypted package is sent to the recipient. It's secure, compact, and ready 

for transmission. 

While the data has been received, the recipient first decompresses the package to get back the 

combined encrypted data and the encrypted AES key. Using their RSA private key, the recipient 

decrypts the AES key's hashed version. They then use this decrypted information to retrieve the 

original AES key. Finally, they use the AES key to decrypt the original data, turning it back into a 

readable format. 

Model Evaluation Summary 

Evaluating the proposed system in involves several structured steps that focus on performance, 

security, and efficiency. Here’s an outline of these steps: 

Step 1: Implementation of Encryption and Compression Algorithms: 

As previously designed in section 3.5, the process begin by implementing the AES (Advanced 

Encryption Standard) algorithm for data encryption. AES is typically used for its strong security 

properties and efficiency. 

Integrate a modified RSA algorithm to secure the AES key, ensuring the encrypted tokens are well-

protected against unauthorized access. 

Apply Huffman encoding to compress the AES-RSA encrypted tokens, aiming to reduce data size 

for transmission and storage efficiency. 

Step 2: Data Collection: 

http://www.iiardjournals.org/
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Use a set of randomly generated strings as test data. For consistency, Python’s Mersenne Twister 

library (a widely used random number generator) can be employed to generate these strings, which 

will simulate sensitive transaction data that the system is designed to secure and compress. 

Step 3: Performance Metrics Evaluation: 

Compression Ratio: 

Measure the efficiency of the Huffman encoding by calculating the compression ratio, which 

indicates how much the data size has been reduced. 

Encryption and Compression Time 

Track the time taken by the system to perform both encryption (AES and RSA) and compression 

(Huffman encoding) steps. This metric is crucial for evaluating the real-time feasibility of the 

system. 

Decryption and Decompression Time 

Evaluate the time needed for decrypting and decompressing the data, ensuring that the retrieval of 

original data remains efficient. 

Step 4: Security Analysis: 

Conduct a Ciphertext Analysis to check if the data remains secure and unreadable without the 

necessary keys. AES’s strength, alongside RSA’s public-key encryption, should be validated for 

resilience against brute force and chosen ciphertext attacks. 

Avalanche Effect Measurement: Assess the avalanche effect, where a small change in the input 

should result in significant changes in the output. A strong avalanche effect indicates robust 

encryption. 

Entropy Calculation: Calculate the entropy of the encrypted data to ensure high randomness, 

which contributes to security. High entropy values indicate that the encryption process makes it 

difficult for attackers to deduce the original data. 

Computational Overhead Analysis: 

Analyze the computational resources used by the system, particularly memory and processor 

utilization. This analysis is essential for understanding the scalability of the system, especially for 

large datasets or high-frequency transaction environments. 

Step 5:  Comparative Performance Analysis: 
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Benchmark the proposed system against existing encryption-compression models (if available). 

This involves comparing metrics such as compression ratio, processing time, and resource 

utilization to determine the effectiveness of the hybrid AES-RSA-Huffman model over 

alternatives. 

These steps will provide a comprehensive evaluation of the proposed hybrid encryption-

compression system, ensuring its effectiveness, security, and practicality in banking applications. 

RESULT 

This chapter presents and discusses the result and findings of the research. Various input text sizes 

ranging from 1 kilobyte 1 megabyte were used as input data to test the efficiency of the system. 

Figure 4 Authentication Page where user will enter his preferred password for validation  

Figure 5 is the AES encrypted password which is the first stage of password token encryption using 

advanced encryption standard   

Figure 6 shows the 32-bit AES key encrypted using modified RSA with SHA-256. 

 Figure 7 shows the Huffmann Binary encoded data to be stored to be converted then stored for 

transmission. 

Figure 8 shows file encryption-compression time and space report for the modified AES RSA and 

Huffman hybrid system.  

Table 9 shows the encryption space complexity for the conventional AES RSA and Huffman and 

modified system. 

 

 
Figure 4: Authentication Page 
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Figure 5:  AES Encrypted Password 

 
Figure 6: Modified RSA Pattern Encrypted AES Key 
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 Figure 7: Huffman Encoded Data: 

 
Figure 8: 1 kilobyte Encrypted. File encryption-compression time and space report for 

Conventional AES RES and Huffman. 
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Table 1: Encryption (Space) Complexity 

SN Size AES-RSA 

Huffman(bytes) 

Enhanced AES RSA-SHA-

256 Huffman (bytes) 

1.  1024 686.125 724.625 

2.  2048 1379.75 1445.375 

3.  5120 3456.25 3627.125 

4.  10240 6897.375 7253.125 

5.  20480 13796.875 14511.5 

6.  51200 34442.125 36275.5 

7.  102400 68900.0 72558.0 

8.  204800 137888.75 145110.95 

9.  512000 344597.75 362782.875 

10.  1055670 710337.75 747964.875 

Table 2: Encryption Time Complexity  

SN Size on Disk AES-RSA 

Huffman(seconds) 

Enhanced AES RSA-SHA-

256 Huffman (seconds) 

1.  1024 0.149950 0.001003 

2.  2048 0.290410 0.216592 

3.  5120 0.757891 0.789130 

4.  10240 1.468064 1.764096 

5.  20480 2.716959 2.969311 

6.  51200 7.007834 7.244300 

7.  102400 13.737787 14.286484 

8.  204800 28.177013 27.328622 

9.  512000 72.648272 72.406702 

10.  1055670 141.920079 147.832119 

 

Table 3: Security Strength (Avalanche Effect) 

SN Size on Disk AES RSA Huffman 

Encoding 

Modified AES RSA SHA-

256 Huffman Encoding 

1.  1024 0.80886 0.8245 

2.  2048 0.79454 0.8187 

3.  5120  0.78789 0.8065 

4.  10240 0.78005 0.7965 

5.  20480 0.72988 0.7856 

6.  51200 0.71688 0.7755 

7.  102400 0.697546 0.7697 

8.  204800 0.691254 0.7531 

9.  512000 0.68755 0.7478 

10.  1055670 0.68440 0.7354 
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Figure 9: Data Encryption Space Comparison 

 

Figure 10: Data Encryption Time Comparison 
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Figure 11: Data Encryption Security Strength Comparison 

Table 4: Testing Machine 

SN Description Value 

1.  
Processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz   2.71 GHz 

2.  
Installed RAM 16.0 GB (15.9 GB usable) 

3.  CPU Cores 4 Logical Processor(s) 

4.  Local Disk SSD 1TB 

5.  
Local Disk Location Bus Number 1, Target Id 0, LUN 0 

6.  OS Name Microsoft Windows 11 Pro 

7.  Version 10.0.22621 Build 22621 

8.  System Manufacturer HP 

9.  SMBIOS Version 2.8 

10.  BIOS Mode Lagacy 

11.  Base-Board Version 83.14 

12.  
System Type 64-bit operating system, x64-based processor 
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RESULT DISCUSSION 

Figure 4 represents the authentication interface where the user enters their preferred password for 

validation. This stage is crucial as it serves as the entry point for securing data within the system. 

The authentication mechanism ensures that only authorized users can access encryption and 

decryption functions, reinforcing the confidentiality of sensitive information. Given that the 

system integrates AES and RSA encryption, the password may also play a role in key derivation 

and management ensuring a secure foundation for subsequent encryption processes. 

The authentication page’s design is a fundamental aspect of cybersecurity as weak authentication 

mechanisms can compromise the entire encryption framework. The system’s ability to validate 

user credentials securely without exposing sensitive data is crucial. If multi-factor authentication 

(MFA) or additional security layers were incorporated the system’s resilience against attacks such 

as quantum attempts and credential stuffing would significantly improve. The strength of the 

authentication phase ultimately dictates the security of the encryption process that follows. 

Figure 5 displays the result of encrypting the user’s password using the Advanced Encryption 

Standard (AES). AES is a widely used symmetric encryption algorithm known for its heftiness and 

efficiency. The encryption of the password before any further processing ensures that the plaintext 

credentials are not stored or transmitted in an unprotected form, mitigating risks associated with 

password leaks. Given that AES operates in different modes (e.g., ECB, CBC, GCM), the chosen 

mode impacts both security and performance. 

Figure 6 showcases the AES key encrypted using the modified RSA algorithm, incorporating SHA-

256. In this approach, instead of encrypting the AES key directly, SHA-256 is first applied to 

generate a hash, which is then encrypted using RSA. This method enhances security by reducing 

direct exposure of the AES key in its raw form, adding a cryptographic layer that ensures integrity 

and resistance to key-recovery attacks. Since RSA is traditionally vulnerable to certain attacks 

when encrypting small keys the use of SHA-256 addresses these concerns by increasing 

randomness in the ciphertext. 

The integration of SHA-256 with RSA encryption enhances security by preventing attackers from 

easily reconstructing the original AES key, even if partial information about the encrypted key is 

exposed. The approach also introduces a challenge regarding key management, as decrypting the 

AES key requires both the RSA private key and knowledge of the hashing mechanism. While this 

modification adds an additional processing step, the security benefits outweigh the computational 

overhead, making it a viable improvement over conventional RSA encryption methods. 

Figure 7 depicts the application of Huffman encoding, a lossless data compression technique. 

Huffman encoding optimizes storage efficiency by assigning shorter binary codes to more 

frequently occurring characters in the data. This step is particularly useful in an encryption system 

because it reduces the size of encrypted data before transmission or storage, thereby improving 

overall efficiency. By incorporating Huffman encoding, the system achieves better space 

utilization without compromising data integrity or security. 

In this encryption framework, Huffman encoding complements AES and RSA by ensuring that 

encrypted data occupies minimal storage space while maintaining recoverability. Since Huffman 
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encoding is reversible, the original data can be reconstructed without loss after decryption. 

However, the effectiveness of this approach depends on the entropy of the input data—highly 

random data may not compress significantly. Nevertheless, this step provides additional 

optimization, making the hybrid system more efficient in handling encrypted files. 

Figure 8 presents an analysis of encryption and compression times for the conventional AES-RSA-

Huffman system versus the modified AES-RSA-SHA-256-Huffman system. The report measures 

the efficiency of each method in terms of computational time and space utilization. The results 

indicate that while the modified system introduces slight increases in processing time due to 

additional hashing operations, it provides a more secure encryption framework. The trade-off 

between security and computational efficiency is a key consideration in encryption system design. 

The findings suggest that the enhanced system remains practical for real-world applications, as the 

increased encryption time does not significantly impact usability. The space utilization report also 

demonstrates that while Huffman encoding contributes to compression, the added cryptographic 

steps slightly increase the final storage requirements. Overall, the modifications provide stronger 

security with a manageable increase in computational overhead, making the system a viable 

enhancement over conventional methods. 

Table 1 compares the space complexity of the conventional AES-RSA-Huffman system and the 

modified AES-RSA-SHA-256-Huffman system across different file sizes. The results show that 

while both systems maintain reasonable storage footprints, the modified system requires slightly 

more space due to the additional SHA-256 hashing step. For instance, for a 1,024-byte file, the 

conventional system requires 686.125 bytes, while the modified system uses 724.625 bytes. This 

pattern is consistent across all file sizes, with the space requirement increasing proportionally. 

The additional storage overhead is a result of the SHA-256 hashing step, which expands the 

ciphertext before RSA encryption. Although this increases the storage requirement slightly, the 

trade-off for improved security is justifiable. The increase in space is not exponential, meaning 

that for most practical applications, the modified system remains an efficient choice. The slight 

increase in space usage ensures better protection against cryptographic attacks while maintaining 

reasonable storage efficiency. 

Table 2 evaluates the encryption time complexity of the two encryption models. The results 

indicate that for smaller file sizes (e.g., 1,024 bytes), the modified system encrypts data in less than 

a millisecond, showcasing negligible performance impact. However, as file sizes increase, the 

additional hashing step causes a slight increase in encryption time. For instance, a 512 KB file is 

encrypted in 72.40 seconds using the modified system, compared to 72.64 seconds for the 

conventional system. 

The results demonstrate that while the enhanced system has a slight time overhead, the increase is 

not substantial enough to hinder performance. The hashing operation adds a predictable delay, but 

its impact diminishes at larger file sizes due to parallel processing and optimization in modern 

processors. This finding suggests that the modified approach is practical for real-world 

applications where security is a priority, as the encryption delay is not excessive. 

Table 3 measures the security strength of both encryption models using the avalanche effect an 

indicator of how much the ciphertext changes when a single bit in the plaintext is altered. The 

results show that the modified AES-RSA-SHA-256-Huffman system has a higher avalanche effect 
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across all file sizes. For instance, at 1,024 bytes, the conventional system records an avalanche 

effect of 0.80886, while the modified system achieves 0.8245. This trend continues across larger 

files, with the modified system consistently demonstrating superior security. 

A higher avalanche effect indicates stronger diffusion properties, meaning small changes in input 

data result in significantly different ciphertexts. This enhances resistance against differential 

cryptanalysis attacks, making the modified system more stronger. The improvement in security 

strength justifies the minor increases in encryption time and space complexity as the system 

provides a stronger defense against cryptographic attacks while maintaining reasonable 

performance. 

Figures 9, 10, and 11 illustrate the space, time, and security comparisons between the conventional 

and modified encryption systems. These visual comparisons reinforce the tabular findings, 

demonstrating the trade-offs between security and performance. Figure 4.6 highlights the slight 

increase in storage space required by the modified system. Figure 4.7 showcases the minimal 

increase in encryption time, while Figure 4.8 confirms the improved security strength. 

Table 4 provides the specifications of the testing environment, which is crucial for evaluating 

encryption performance. The system is equipped with an Intel Core i5 processor, 16GB RAM, and 

an SSD, ensuring that encryption operations are tested on a capable platform. These specifications 

suggest that the results may vary on lower-end devices, but the overall trend of efficiency versus 

security should remain consistent. 

CONCLUSION 

The findings of this research confirm that the combination of modified RSA with SHA-256, AES 

encryption, and Huffman encoding provides an effective security framework for banking 

transactions. The study demonstrates that integrating SHA-256 into RSA encryption enhances the 

protection of AES keys, making brute-force and cryptanalytic attacks more difficult. Although the 

space and computational time increased marginally compared to conventional models, the security 

improvement outweighs the added complexity. 

Furthermore, Huffman encoding effectively compresses encrypted transaction data, optimizing 

storage and transmission efficiency. This ensures that banking institutions can secure sensitive data 

while reducing processing time and costs associated with data transmission and storage. The 

experimental results validate that the proposed hybrid model achieves a balance between security 

and performance, making it suitable for real-world applications where security, speed, and storage 

efficiency are critical. 

 RECOMMENDATION 

Based on the study findings, the following recommendations are made: 

1. Adoption in Banking Systems – Financial institutions should consider integrating the 

proposed hybrid encryption-compression model into their security architecture to enhance the 

protection of sensitive banking transactions. 
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2. Further Performance Optimization – Future research should focus on optimizing the 

computational efficiency of the RSA-SHA-256 encryption process to minimize the slight 

increase in encryption time. 

3. Implementation in Real-World Transactions – The hybrid model should be tested in live 

banking environments to assess its effectiveness under real-time transaction loads and varying 

network conditions. 

4. Integration with Emerging Technologies – The model should be explored for use in 

blockchain-based banking transactions and IoT-enabled financial systems to enhance security 

in decentralized financial networks. 

5. Multi-Factor Authentication Enhancement – The encryption model should be combined 

with biometric authentication methods to create a more robust security framework for banking 

applications. 
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